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ABSTRACT

In this paper we deal with the use of multivariate normal mixture distributions to
model assct returns. In particular, by modeclling daily assct returns as a mixture of a
low-volatility and a high-volatility distribution, we obtain three main results : (i) we can
use posterior probabilities to identify hectic observations; (ii) we are able to compute a
nonparametric fat-tails Value at Risk by sampling repeatedly from the mixture and com-
puting the quantile of the empirical distribution; (iii) we can use the estimated parameters
of the hectie distribution for stress testing purposes. We show how these three items can
be addressed using either real data and simulation methods.

(*) I wish to thank Luca Cazzulani, Vladimiro Ceci and Walter Vecchiato for their comments

and suggestions. All remaining mistakes are mine own.
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1 Introduction

Since the work by Mandelbrot (1963) and Fama (1965), many empirical
analyses have found evidence of heavy tails in the marginal distributions of
asset returns. The implication is that the usual normal-based Value at Risk
(VaR) calculations are likely to be misleading, in the sense that they would
produce figures that underestimate actual losses.

On the other hand, stress testing analyses are often based on the vo-
latility and correlation of the ”hectic” observations, i.e. the observations
corresponding to periods of financial markets’ crisis, but it is not clear how
to identify these periods. Whereas this last problem is still essentially open,
many solutions to the fat-tails problem have been proposed in the litera-
ture, including ARCH-type models, Extreme Value Theory and Stochastic
Volatility models.

In this paper we focus on the use of mixture distributions, which provide
a good way of tackling both problems. The basic idea is that the data genera-
ting process of a time series of asset returns is a mixture of two distributions
with a similar mean but different covariance matrices: in particular it is na-
tural to expect that most observations are generated by the low-volatility
distribution, while the remaining observations are generated by the high-
volatility (hectic) distribution. As will be seen in the following sections, this
approach can be considered as a tool for reaching three different goals:

(i) identifying correctly the observations generated by each distribution;
(ii) estimating a fat-tails VaR;
(iii) perfoming stress test analyses using the parameters of the high-volatility
distribution.

The rest of the paper is organized as follows: in section 2 we introduce
the statistical model and its most important properties; in section 3 we ex-
plain how it can be used in a risk management framework; in section 4 we
apply the methodology to real and simulated data and present the results;
section 5 concludes.

2 A Model for Asset Returns

In this section we define the statistical model which will be used to
describe the behavior of asset returns and derive some of its properties. In the
next section we will show how these properties can be used for our purposes.

Given a vector of p asset returns Y’ = (Y; --- Y} ), it is convenient
to partition it into a set of core assets Y| = (Y7 --- Y,) and a set of
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peripheral assets Y5 = (Y 41 --- Yp,). Let the density of the (p x 1)
random vector Y’ = (Y] Y)) be

fy(y) =mfyo (y) + mfye (¥),

where m = 1 — 7 and fy) (y) is the N(u(, 2) density. In partitioned
form, the expected value and covariance matrix of Y in the two populations
are given by

where the notation F;, cov;(Y) means that the expectation and covariance
matrix are computed with respect to the i-th distribution. The maximum
likelihood estimators of the parameters 7y, u(1), 2, £ 3(2) can be obtai-
ned using the EM algorithm [for details see McLachlan and Krishnan (1996)].
As a by-product, the algorithm provides us with the so called posterior pro-
babilites 7;(y;):

7i(y;;0) = mify (¥339) ~—, (1)

T fyo (¥5:0) + mafye (55 0)

where 8 = (m; p®" p@" vec(ZMW)  vec(Z®)). (1) represents the
probability, computed on the basis of the estimated parameters, that an
observation comes from the i-th population. It is often called posterior pro-
bability of the j-th observation.

Finally, it is possible to evaluate the conditional expectation of Y, given
Y, in each population:

Ei(YoY1 =y1) = p3) = p + =0 &)y - pl?), =12 (2)

We expect this conditional expectation, when computed using the (estima-
ted) parameters of the high-volatility distribution, to reflect the reaction of
the peripheral assets according to the volatilities and correlations of the hec-
tic periods.
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3 Mixture Models in Risk Management

Mixture models can be used for risk management purposes as outlined
in section 1.

Consider first the problem of identifying periods of financial markets tur-
moil. This issue is often important because statistical properties of the data
generating process change considerably in turbulent periods; in particular,
correlations between asset returns are different in stressful and quiet market
conditions, a phenomenon known by the name correlation breakdown [see
Boyer, Gibson and Loretan (1999) and Loretan and English (2000)]. Accor-
ding to this finding, a naive methodology of performing stress test analyses
consists in estimating correlations using only observations from hectic pe-
riods, which poses the problem of identifying the observations to be used.
Implicitly, this approach assumes that the observations are generated by a
mixture of low- and high-volatility distributions and therefore, if we intro-
duce explicitly this assumption, we can use (1) to conclude that y, is an
hectic observation if and only if 75(y;; ) > 0.5.

Once we have estimated the parameters of the mixture, we can easily
get a fat-tails VaR: a mixture distribution is indeed able to approximate ar-
bitrarily well any distribution, and therefore, if the distribution of the data
is leptokurtic, the non-parametric VaR obtained by Monte Carlo simulation
from this distribution will reflect this feature, that is, will be larger (in ab-
solute value) than the normal one. Notice that this is still a result related to
"normal” market conditions because it uses all the observations to address
the problem of fat tails. On the other hand, if we want to perform stress test
analyses (i.e. we decide to focus on hectic observations), we can obtain a
(parametric or nonparametric) VaR using the covariance matrix 2(?) of the
high-volatility distribution.

As for stress testing, the idea [see Kim and Finger (2000)] consists in
shocking the core assets Y1) and computing the movement of the peripheral
assets Y(2) as the conditional expectation E»(Y 2|y (1),

4 Applications and results

(i) Identifying hectic observations. In order to assess whether posterior
probabilities give correct indications about the population membership of
an observation, we performed an experiment based on simulated data: we

generated 500 observations from the mixture

f(y) =0.9f1(y) +0.1f2(y), (3)
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where f1(y) ~ N5(0, M) and fa(y) ~ N5(0,332)). (1) and ) are given
by

0.536  0.170 —0.30 —0.845 0.211

0.169  1.558  0.508 —0.285 —0.796

> =1 -029 0508 1.208 —0.136 —0.008 |;

—0.845 —0.285 —0.136 2.954 —0.774

0.211 —0.796 —0.008 —0.774 1.899

9 0.170 -0.30 —-0.845 0.211
0.169 8 0.508 —0.285 —0.796
=@ =1 -0296 0.508 6 —-0.136 —0.008
—-0.845 —0.285 —0.136 7 —0.774

0.211 -0.796 —0.008 —0.774 10

Notice that () differs from (! only for the variances, which are much
larger in the second population.

Unlike the multivariate normal case, in the multivariate normal mixture
setup the estimates of the parameters obtained with marginal and full di-
mensional data are not the same [for details see Bee (1998)]. For this reason
we show below the estimates obtained with five-, two- and one-dimensional
data. With five-dimensional data we get:

71 = 0.916;
" =(-0.044 —0.108 —0.048 0.110 0.071);

a3 =(-0.377 0.307 —0.389 0.566 —0.751);
diag(ZW) = (0.539 1.647 1.182 2.654 2.170);
diag(EZ®) = (12216 8.482 7.126 6.453 11.071).

With bivariate data (the data of the first two components of Y') the results

are:

#1=10.920; a0 =(-0.026 —0.111); A® =(-0.595 0.360);
diag(ZW) = (0.552 1.631); diag(2?) = (12.435 8.943).

Finally, with univariate data (the data of the first component of Y) we get

71 =0.866; M =—-0.001; A% =0.392;
62 = 0.550; 62 = 5.014.

Figures 1 to 3 show the posterior probabilities that an observation comes
from the high-volatility distribution, computed respectively with five-variate,

March 2001 page 5



bivariate and univariate data. Notice that, although at first sight the graph in
figure 1 is more convincing, the graphs in figures 2 and 3 are more informative,
as a few small (in absolute value) returns are actually generated by the high-
volatility distribution. For comparison, figure 4 shows the results of the same
Monte Carlo experiment, but with observations generated by a mixture whose
second component has a mean vector equal to u® = (6 6 6 6 6). In
this case, where population membership is essentially known, estimating the
posterior probabilities with full data gives extremely precise results. Anyway,
in all cases the posterior probability indicates that we are essentially certain
about population membership of the large (in absolute value) observations,

and this is the most important result for our purpose.
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Fig. 1 - Posterior probability as function of returns - univariate data
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Fig. 2 - Posterior probability as function of returns - bivariate data

4 om0 o® ®WE 5 coo o 4

XY ®

S0 © oogp®OO0O O 00 O O
o
oo ° e

o

0o

o

Returns

page 6



Fig. 3 - Posterior probability as function of returns - multivariate data
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Fig. 4 - Posterior probability as function of returns - different mean vectors
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From these results it is not clear whether one should use univariate,
bivariate or p-variate data. As for the estimation of parameters, some results
have been derived by Bee and Flury (2000). Roughly speaking, they showed
that the use of additional marginal distributions is only convenient when they
provide relevant informations about the separation of the two populations. In
our case the means of the two populations are almost identical, and therefore
the contribution of additional marginal distributions is almost negligible.
When the means are similar, the results obtained with the two approaches

are similar as well.

Kim and Finger’s (2000) method consists in estimating separately each
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bivariate mixture distribution. Therefore, if we are working with p risk
factors and we want to estimate all the parameters, we have to estimate
p(p — 1)/2 different mixture distributions.

As to the problem of using the full-dimensional approach or Kim and
Finger’s approach, from a computational point of view two remarks have to
be done. When we use the full-dimensional approach we get all the estimates
by running the algorithm once, whereas if we estimate separately all the
bivariate mixtures we have to run the algorithm p(p—1)/2 times. In addition,
in the bivariate approach the estimates of the expected value and variance
of a variable will be different depending on which bivariate distribution we
consider: for example, if we have just three variables, we need to estimate
either cov(Y7, Ys2) and cov(Y7, Y3). In both cases we get an estimate of y1 and
0%, but these two estimates will not be the same, and in general there is no
a priori reason to prefer one of them. In our context, it might be reasonable
to choose 62 = maxj<;j<, 62, i=1,...,p.

On the other hand, if the dimension p is ”too large”, in the full dimensio-
nal case a problem of multicollinearity might arise, and the algorithm would
not converge. From numerical experiments, p becomes too large when it is
larger than, approximately, a number between 30 and 40.

The bivariate approach used in Kim and Finger (2000) overcomes the

dimensionality problem, but is computationally much heavier.
(ii) VaR. As for the computation of a fat-tails VaR, we present either a real
data example and some simulation results. We estimate a 13-dimensional
normal mixture consisting of equities (Mibtel, Ftse, Dax, Standard & Poor’s
and Nikkey indices) and bond indices (1-3 years and 7-10 years baskets of
government European, American and Japanese bonds); the data consist of
daily returns covering the period Jun 2, 1993 - Feb 2, 2001 and were obtained
from Bloomberg™™ . The portfolio is balanced so that the weights of equities
and bonds are the same.

Table 1 shows three different VaR measures computed at four different
confidence levels for the data at hand: we computed first the VaR based on
the "hectic” covariance matrix 2(2), which turns out to be, as expected, the
largest one for all confidence levels. In addition, we computed a "normal”
VaR based on the estimate of the covariance matrix obtained under the
assumption that the observations are multinormally distributed and a non-
parametric VaR obtained from the mixture data. As for this last measure,
we generated 10000 observations from the mixture whose parameters are the
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estimates at hand and obtained the measures shown in the fourth column of
table 1. This number should still be interpreted as the maximum loss (with
95% probability) in normal market conditions, as it uses all the observations,
but it takes care of the fat-tails problem. Notice that at the 95% level the
"normal” and "mixture” VaR are essentially identical, whereas, as the level
gets larger, the mixture VaR is also larger than the normal VaR.

Table 1

VaRhec VaRnorm VaRmix

95% —1.64 —1.04 —1.05
98% —2.02 —1.30 —1.45
99% —2.27 —1.49 —1.75
99.5% —2.50 —1.65 —2.03

To give an idea of the precision of these VaR measures, we look at the actual
losses. Indicating with r. the proportion of times the return is smaller than
¢, we get the results shown in table 2.

Table 2

r_1.64 r 1.04 r-1.05

1.34% 5.44% 5.29%

r 202 r_1.30 r_1.45

0.75% 2.7% 2%

r_soa7 r_1.49 r_i1.75
0.5% 2% 1%
r_250 r_1.65 r_2.03

0.25% 1.25% 0.75%

The conclusion is that the normal VaR underestimates the actual ex post
loss, in particular for high confidence levels, whereas the mixture VaR shows
a much better performance. On the other hand, the VaR obtained with
the hectic covariance matrix overestimates the actual loss; this fact is not
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surprising as it is based only on the distribution of the hectic observations.
The three distributions are shown in figure 5.

Fig. 5 - Three VaR measures - 99% level
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We have also estimated separately each bivariate mixture distribution
and therefore each element of 3(?): in this case the ”hectic” VaR turns out to
be -1.65 (obviously the normal VaR obtained under the normality assumption
remains equal to -0.71).

In a simulation setup equal to the one used for computing posterior
probabilities, but with n = 10000, the three VaR measures (for a portfolio
where each risk factor has a weight equal to 0.2) are shown in table 3 and the
ex post actual losses in table 4. These results seem to confirm those obtained
in the preceding real data example. For high confidence levels the mixture
VaR is much more precise. Similar results are obtained by Zangari (1996),
who uses mixture models in a Bayesian framework.
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Table 3

VaRhec VaRnorm VaRmix
95% —1.96 —0.85 —0.76
98% —2.47 —1.05 —1.08
99% —2.79 —-1.21 —1.55
99.5% -3 —1.35 —2.02
Table 4
r_1.96 r_o.85 r_o.76

0.52% 3.68% 4.76%

r o4y r_1.05 r_1.08

0.19% 2.19% 2.04%

r_279 ri1.21 r_i155

0.12% 1.62% 1.08%

r_s r_1.3s r_2.02

0.08% 1.31% 0.49%

(iii) Stress Testing. We now turn to the use of this model for stress te-
sting purposes. The approach proposed by Kim and Finger (2000) consists
in computing the conditional expectation (2) in the hectic population, i.e.
using the parameters 12 and @, Again, we ran a simulation to compare
the performance of the five-variate and bivariate approach and to get an idea
of how many observations are needed in order to obtain a good estimate
of the conditional expectation. Therefore we first generated n observations
from the five-dimensional mixture (3). Applying a shock equal to +30; to
the last value of Y7, we computed the expected value using the estimated pa-
rameters obtained with five- and two-dimensional data. With n = 10000, the

true conditional expectation, the five-dimensional estimate and the bivariate
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estimate are respectively equal to

p? = (0264 —0.462 —1.320 0.330);
2" = (0237 —0.630 —1.756 1.041);
s = 0.282.

With n = 5000, we get

p® = (0196 —0.344 —0.981 0.246);
a8 = (0522 —0.603 —0.900 1.094);
s = —0.519.

With n = 1000, the results are

p® =(0266 —0.466 —1.330 0.332);
a2 = (100 —1777 —3.132 —0.024);
Y =1.167.

With n = 500 we get

p@ = (0127 —0222 —0.634 0.159);
ps? = (-0.891 —1.166 —0.087 0.198);
s = —0.873.

Whereas the differences between the bivariate and five-variate approach are
negligible, it is clear that the sample size n plays a crucial role. In fact, it is
known that, when the two populations are not well separated, the maximum
likelihood estimates converge very slowly to the true values of the parameters
[for details see McLachlan and Krishnan (1996), pag. 105-108].

Finally, we stress our portfolio. We consider a scenario where the stock
markets fall: in particular we choose Standard & Poor’s, Mib30 and Dax
as core assets. The exogenous shocks on the core assets and the estimated
movements of the peripheral assets are shown in table 5 and 6.

Table 5 - Shocks on the core assets

S&P MIB30 DAX
—10% —5% —7%
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Table 6 - Reaction of peripheral assets

Asset Return
Nikkey —3.93%
FTSE —6.67%
USD1YR —2.79%
USD41YR —2.61%
GER1YR 0.003%
GER4YR —0.02%
JAP1YR —2.05%
JAP4YR —-1.92%
UKI1YR —2.02%
UK4YR -2.2%

As was to be expected, yields fall as a result of people switching from equity
to bonds.

Notice that using Kim and Finger’s approach it would only be possible
to compute the conditional expectations

By (YilY; = y5), i=12,....p, i#]

This means that we can’t stress more than one asset at a time and see how
the peripheral assets react to this joint movement. Thus it would not be
possible to perform this last experiment.

5 Conclusions

In this paper we showed how mixture models can be used for risk ma-
nagement purposes. The main applications concern fat-tails VaR calcula-
tions and stress testing. As for VaR calculations, it turns out that the non-
parametric VaR obtained via Monte Carlo simulation using the covariance
matrix of the mixture distribution provides a measure which is more precise
than the one given by the normal VaR; a comparison with the actual ex
post loss confirms the appropriateness of this VaR measure. The use of the
parameters of the hectic distribution allows to perform stress test analyses
using correlations and volatilities of the high-volatility periods; these periods
are identified by the procedure via the posterior probabilities.
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If possible (i.e., if the number of risk factors is not too large), it appears
that the multivariate (full dimensional) approach should be used. Only when
we deal with a very large number of variables we may be forced to use
the bivariate approach, but in this case the estimation of parameters would

become very expensive from a computational point of view.
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